Charge/discharge and Electrochemical Characteristics of Secondary Lithium/pyrite Battery
نویسندگان
چکیده
Iron disulfide (FeS2) is attractive as a positive electrode material in lithium batteries because of its low material cost, environmental non-toxicity, and high specific energy density. Furthermore, natural pyrite is a secondary product of the mining extraction of coal. For these reasons, natural and synthetic pyrites have been proposed as active cathode materials in secondary lithium batteries. We investigated the effect of various solvents on the electrochemical properties of lithium-FeS2 batteries. The specific discharge capacity of Li/FeS2 cells varied from 500 to 780mAh/g based on FeS2.
منابع مشابه
Numerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کامل